拉格朗日点高中物理 拉格朗日点是什么

对于十八世纪的数学界而言,欧拉无疑是最伟大的人物,而除去欧拉之外,最响亮的名字无疑是拉格朗日 。作为法国数学著名的“三L”之首(其余二人为拉普拉斯和勒让德),拉格朗日为法国数学走向辉煌奠定了坚实基础。由于出众的贡献,拉格朗日颇受拿破仑的器重,并被这位高傲的皇帝称赞为“数学这门学科中高耸的一座金字塔” 。

拉格朗日点高中物理 拉格朗日点是什么

文章插图


数学近两百年来的许多成就都可以直接或间接追溯到拉格朗日的工作上,而对于分析学及相关学科而言,他是整个数学史上最具影响力的几个数学家之一 。
拉格朗日拉格朗日的一生并不像费马那样波澜不惊,在自身的身世和性格,还有时代的影响下,他的一生颇具传奇色彩,甚至算得上跌宕起伏 。
拉格朗日(Joseph-Louis Lagrange,1736~1813)尽管被后世称为法国数学家和力学家,但他实际上并不能算是一个完全的法国人 。拉格朗日的祖父曾经是法国的骑兵,长期在意大利的撒丁岛上服役,退役后定居于意大利的都灵,又取了当地人为妻 。拉格朗日的父亲虽然继承了自己父亲的职务和财产,但这位著名的败家子和投机分子很快就将财产挥霍一空 。拉格朗日的父亲也许是天生不幸,他的十一个子女除了拉格朗日外全部夭折 。不过拉格朗日回忆到自己的父亲时,却乐观地说到:“如果我真的继承了丰厚的财产,那么我很可能将与数学无缘” 。这样的“不幸”对于拉格朗日本人和数学界而言,或许是一种真的幸运 。
拉格朗日点高中物理 拉格朗日点是什么

文章插图


拉格朗日的青年时代都是在都灵度过的,按照传统,拉格朗日着重学习了欧式几何,阅读了欧几里得和阿基米德等古希腊数学家的著作,渐渐熟悉了来自古希腊的综合几何方法,不过几何学在拉格朗日的一生中从未真正引起过他的兴趣 。
拉格朗日点高中物理 拉格朗日点是什么

文章插图


恰好在这个时候,英国著名天文学家哈雷写的一篇名为《论分析方法的优越性》的论文传入了拉格朗日的手中 。在论文中,哈雷介绍了微积分理论在几何学上的应用,极力称赞分析方法相对于欧式几何的优越性 。分析学就这样一下子引起了年轻的拉格朗日的兴趣,成为了他一生研究的中心 。
在非常短的时间里,拉格朗日就通过自学掌握了当时几乎所有的分析学知识 。大约在18岁的时候,拉格朗日写出了自己的第一篇数学论文,研究了如何用牛顿二项式定理得出函数乘积的导数 。不过这一结果早已经被莱布尼茨获得,也就是我们熟悉的莱布尼茨公式:
拉格朗日点高中物理 拉格朗日点是什么

文章插图


拉格朗日非常兴奋地写信给欧拉告诉他自己的成果,尽管这已被前人发现,但欧拉还是看出了拉格朗日巨大的潜力,于是回信鼓励了这位年轻人 。幸而拉格朗日并没有垂头丧气,反而愈发奋进,成为了欧拉之后最出色的分析学家 。
拉格朗日点高中物理 拉格朗日点是什么

文章插图


变分法与微分方程在欧拉的影响下,拉格朗日开始研究当时非常热门的变分法 。变分法起源于最速下降曲线问题,这个问题最早由约翰-伯努利提出,而后首先被伟大的牛顿所解决 。欧拉作为伯努利家族的继承人,对变分法可谓情有独钟,他于1744年出版的著作《寻求具有某种极大或极小性质的曲线之技巧》则正式标志着变分法这门学科的诞生 。
拉格朗日点高中物理 拉格朗日点是什么

文章插图


拉格朗日在研究“等周问题”的过程中,他充分领会了欧拉的变分法思想,完全摒弃了伯努利兄弟那种模糊不清的几何观点,代之以可靠的分析方法,从而完全解决了这个了古老的问题,同时他也为变分法奠定了分析学的基础,提出了所谓的变分法基本引理 。1775年,拉格朗日发表了题为《论确定不定积分公式的极大和极小的一个新方法》,清晰地阐述自己关于变分法的分析方法,给出了一类适用范围非常广泛的一个变分问题的系统解法,这个问题就是求满足一定条件的函数,使得下列积分取极值 。
拉格朗日点高中物理 拉格朗日点是什么

文章插图


而且,拉格朗日对变分法的探索并没有止步,他还继续研究了被积函数包含高阶导数和多重积分的情形 。更重要的是,他成功把变分法引入到了力学之中,例如他首先用具体形式正确表达了最小作用原理 。拉格朗日关于变分法的研究成果如今都成为了教材中的标准内容 。

秒懂生活扩展阅读