泰勒公式怎么用

泰勒公式是将一个在x=x0处具有n阶导数的函数f(x)利用关于(x-x0)的n次多项式来逼近函数的方法,若函数f(x)在包含x0的某个闭区间[a,b]上具有n阶导数,且在开区间(a,b)上具有(n+1)阶导数,则对闭区间[a,b]上任意一点x 。
泰勒公式是一个用函数在某点的信息描述其附近取值的公式,得名于英国数学家布鲁克·泰勒,他在1712年的一封信里首次叙述了这个公式 。它来自于微积分的泰勒定理,如果函数足够光滑的话,在已知函数在某一点的各阶导数值的情况之下,泰勒公式可以用这些导数值做系数构建一个多项式来近似函数在这一点的邻域中的值 。

    秒懂生活扩展阅读