不定积分的概念具体是什么?具体回答如图:
连续函数,一定存在定积分和不定积分;若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在 。
扩展资料:
定积分是把函数在某个区间上的图象[a,b]分成n份,用平行于y轴的直线把其分割成无数个矩形,再求当n→+∞时所有这些矩形面积的和 。
如果F(x)是f(x)在区间I上的一个原函数,那么F(x)+C就是f(x)的不定积分,即∫f(x)dx=F(x)+C 。因而不定积分∫f(x) dx可以表示f(x)的任意一个原函数 。
虽然很多函数都可通过如上的各种手段计算其不定积分,但这并不意味着所有的函数的原函数都可以表示成初等函数的有限次复合,原函数不可以表示成初等函数的有限次复合的函数称为不可积函数 。
参考资料来源:百度百科——不定积分
文章插图
不定积分是什么?∫(sinx)^4dx
=∫[(1/2)(1-cos2x]^2dx
=(1/4)∫[1-2cos2x+(cos2x)^2]dx
=(1/4)∫[1-2cos2x+(1/2)(1+cos4x)]dx
=(3/8)∫dx-(1/2)∫cos2xdx+(1/8)∫cos4xdx
=(3/8)∫dx-(1/4)∫cos2xd2x+(1/32)∫cos4xd4x
=(3/8)x-(1/4)sin2x+(1/32)sin4x+C
一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分 。
连续函数,一定存在定积分和不定积分;若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在 。
扩展资料:
把函数f(x)的所有原函数F(x)+ C(其中,C为任意常数)叫做函数f(x)的不定积分,又叫做函数f(x)的反导数,记作∫f(x)dx或者∫f(高等微积分中常省去dx),即∫f(x)dx=F(x)+C 。
设G(x)是f(x)的另一个原函数,即?x∈I,G'(x)=f(x) 。于是[G(x)-F(x)]'=G'(x)-F'(x)=f(x)-f(x)=0 。
由于在一个区间上导数恒为零的函数必为常数,所以G(x)-F(x)=C’(C‘为某个常数) 。
这表明G(x)与F(x)只差一个常数.因此,当C为任意常数时,表达式F(x)+C就可以表示f(x)的任意一个原函数 。也就是说f(x)的全体原函数所组成的集合就是函数族{F(x)+C|-∞C+∞} 。
参考资料来源:百度百科——不定积分
什么叫不定积分啊?定积分是变量限定在一定的范围内的积分,有范围的.微积分包括微分和积分,积分和微分互为逆运算,积分又包括定积分和不定积分,不定积分是没范围的
众所周知,微积分的两大部分是微分与积分 。一元函数情况下,求微分实际上是求一个已知函数的导函数,而求积分是求已知导函数的原函数 。所以,微分与积分互为逆运算 。
微积分(Calculus)是高等数学中研究函数的微分(Differentiation)、积分(Integration)以及有关概念和应用的数学分支 。它是数学的一个基础学科 。内容主要包括极限、微分学、积分学及其应用 。微分学包括求导数的运算,是一套关于变化率的理论 。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论 。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法 。
定积分包含于微积分
微积分包括:微分,积分
积分又包括:定积分,不定积分
不定积分是只有积分号,没有积分上下限的那种积分
定积分是不但有积分号,还有积分上下限的那种积分
微分:设函数y=f(x)的自变量有一改变量△x,则函数的对应改变量△y的近似值f~(x)*△x叫做函数y的微分.(“~”表示导数)
记为 dy=f~(x)△x
可见,微分的概念是在导数概念的基础上得到的.
自变量的微分的等于自变量的改变量,则
将△x用dx代之,则微分写为dy=f~(x)dx
变形为:dy/dx=f~(x)
故导数又叫微商.
积分:它是微分学的逆问题.函数f(x)的全体原函数叫做f(x)的或f(x)dx的不定积分.记作 ∫f(x)dx.
若F(x)是f(x)的原函数,则有
∫f(x)dx=F(x)+C C为任意常数,称为不定积分常数.
对于定积分,它的概念来源不同于不定积分.定积分檎是从极限方面来.是从以“不变”代“变”,以“直”代“曲”求某个变化过程中无限多个微小量的和,最后取极限得到的.所以不定积分与定积分不是仅差一个常数的问题,即使是在计算上仅差一常数,而且运算法则也基本相同.它们之间建立关系是通过“牛顿-莱布尼兹公式”.公式是
非曲直 ∫f(x)dx=F(b)-F(a) 积分下限a,上限b
不定积分是什么意思具体回答如下:
秒懂生活扩展阅读
- 鳞次栉比的近义词
- 白葡萄酒和红葡萄酒的区别
- stringbuffer和string的区别 stringbuffer
- 去日本和韩国旅游哪个更值得
- 分数中分母和分子的含义
- 腊梅树什么时候种植最好 腊梅树
- 棉线和毛线有什么不同
- 乐东和陵水哪个宜居
- awr和m200哪个威力大 awr
- 维生素c的水果和蔬菜有哪些