实数的概念是什么,实数包括0吗 实数的概念

有多少个实数?一个答案是“无限多” 。因为康托证明了实数轴——,即连续统-——,不能与自然数一一对应,他可以得到更好的答案,“不可数倍数” 。但是我们能更精确吗?Cantor介绍了一种度量无限集合个数的方法:使用Alev数 。Alef是一个希伯来字母,Cantor用它来表示无限集合的数量(Alef " "这个数字在网页上打出来的次数不多) 。他用这样的无限数(基数)、0(第一个无限基数,自然数集的个数)、1(第一个不可数基数)、2等分成所有无限集的个数 。像有限的自然数一样,无限的基数可以相加和相乘,但比自然数容易得多 。
两个无限基数的乘法或加法等于两者中最大的一个 。瑞士科学家约翰海因里希兰伯特在1761年证明了是无理数,也就是说,它不能用两个整数之比来表示 。1882年,林德曼证明了是一个超越数,即不能是任何整系数多项式的根 。圆周率的超越性否定了圆变方的可能性,这是一个古老的尺绘问题,因为所有尺绘只能得到代数数,而超越数不是代数数 。圆转方的问题,是指单位长度已知为1时,要制作的图片长度 。这相当于用1制作图片 。

实数的概念是什么,实数包括0吗 实数的概念

文章插图
但是,直尺能做的数z有对应的最小多项式 。也就是说,有理数系数的多项式m,因此 然而,在1882年,林德曼等人证明圆周率图像不存在这样的多项式 。所有的正则数都是代数数,不是,说明用尺子画图不可能把圆变成正方形 。林德曼证书的超越性使用了被称为林德曼-威尔斯特拉斯定理的结论 。林德曼-魏斯特拉斯定理表明,在有理数域中,如果代数数的几个图像与图像线性无关,那么图像也与图像线性无关 。如果图片是代数数,那么图片也是代数数 。考虑代数数0和图片,因为图片是无理数,所以与图片线性无关 。但是图片和图片分别是1和-1,在图片中不是线性独立和矛盾的 。这说明图片不是代数数,而是超越数 。
【实数的概念是什么,实数包括0吗 实数的概念】

    秒懂生活扩展阅读