最小二乘估计推导 最小二乘估计

什么是最小二乘法?有什么优点?一、最小二乘法的优点:
1、最小二乘法能通过最小化误差的平方和寻找数据的最佳函数匹配 。
2、利用最小二乘法能简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小 。
3、最小二乘法可用于曲线拟合 。其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达 。当自变量和因变量同时存在均值为零,相同方差的随机误差时,此方法能给出在统计意义上最好的参数拟合结果 。
二、、最小二乘法的缺点:
XTX不可逆时,不能用最小二乘估计 。最小二乘法是线性估计,已经默认了是线性的关系,使用有一定局限性 。在回归过程中,回归的关联式不可能全部通过每个回归数据点 。
扩展资料
最小二乘法的原理:
研究两个变量(x,y)之间的相互关系时,通常可以得到一系列成对的数据(x1,y1.x2,y2... xm,ym);将这些数据描绘在x -y直角坐标系中,若发现这些点在一条直线附近,可以令这条直线方程如:
其中:a0、a1 是任意实数
为建立这直线方程就要确定a0和a1,应用《最小二乘法原理》,将实测值Yi与利用计算值Yj(Yj=a0+a1Xi)(式1-1)的离差(Yi-Yj)的平方和
最小为“优化判据” 。
参考资料来源:百度百科-最小二乘法

最小二乘估计推导 最小二乘估计

文章插图
最小二乘估计是什么一,什么是最小二乘估计least-square estimation
例:y = ax + (
其中:y,x 可测;( — 不可测的干扰项;
a —未知参数.通过 N 次实验,得到测量数据 yk 和
xk k = 1,2,3 …,确定未知参数 a 称"参数估计".使准则 J 为最小 :
令:( J ( ( a = 0 ,导出 a =
称为"最小二乘估计",即残差平方总和为最小的估计,Gauss于 1792晏岢?
二,多元线性回归
线性模型 y = a0+ a1x1+(+ anx n + ( 式(2 - 1- 1)
引入参数向量:( = [ a0,a1,(a n ]T (n+1)(1
进行 N 次试验,得出N 个方程:
yk = (kT ( + (k ; k=1,2…,N 式(2 -1- 2)
其中:(k = [ 1,x1,x2,(,x N ] T (n+1) (1
方程组可用矩阵表示为
y = ( ( + ( 式(2 -1- 3)
其中:y = [ y1,y2,...,y N ] T (N (1)
( = [ (1,(2,...,( N ] T (N 1)
N (n+1)
估计准则:
有:
= (y — ( ()T( y — ( ()
(1(N) ( N(1)
J = yTy + (T (T ( ( -yT ( ( - (T (T y
= yTy + (T (T ( ( - 2 (T (T y 式(2 -1- 4)
假设:((T ()(n+1)(n+1) 满秩,由
利用线性代数的以下两个矩阵对向量求偏导数的公式:

有:和
所以:
解出参数估计向量:( Ls =((T ()-1 (T y 式(2 -1- 5)
令:P = ((T ()-1 则参数估计向量 ( Ls = P (T y
参数估计向量 ( Ls 被视为以下"正则方程"的解:
((T ()( = (T y 式(2 -1- 6)
注:为了便于区别,我们用红体字符表示估计量或计算值,而用黑体表示为参数真值或实际测量值.
三,关于参数最小二乘估计 Ls 性质的讨论
以上求解参数最小二乘估计 ( Ls 时并为对{ (k }的统计特性做任何规定,这是最小二乘估计的优点.当{ (k }为平稳零均值白噪声时,则 ( Ls 有如下良好的估计性质:
参数最小二乘估计 ( Ls 是 y 的 线性估计
( Ls = P (T y 是 y 的线性表出;
b) 参数最小二乘估计 ( Ls 是无偏估计,即 E ( Ls= ( (参数真值)
[ 证明 ]:E ( Ls= E[ P (T y ]= P (T E( y ) = P (T E ( (( + ( ) =
P (T ( ( + E( ( ) = ( + 0 = (
最小二乘估计 ( Ls 的估计误差协方差阵是 (2P (n+1)(n+1)
即:E [ ( ( Ls- ( ) ( ( Ls- ( )T ] = (2P
[ 证明 ]:E [ ( ( Ls - ( ) ( ( Ls - ( )T ] = E [ P (T ( y -
( () ( y- ( ()T (P ] = E [ P (T ( (T (P ] = P (T E ( ( (T) (P =
P (T (2 IN(N (P = (2P
若{ (k }为正态分布零均值白噪声时,则 ( Ls 是线性无偏最小方差估计(证明从略).如若{ (k }是有色噪声,则 ( Ls 不具有上述性质,即为有偏估计.
四,最小二乘估计 ( Ls 的的几何意义和计算问题
1.最小二乘估计的几何意义
最小二乘估计的模型输出值为 yk = ( kT ( Ls k = 1,2,…N
输出实际测量值与模型输出值之差叫残差:(k = yk – yk
模型输出向量为 y = ( ( Ls ,而残差向量为:
( = y – y = y – ( ( Ls
(T ( k = (T y – (T (((T ()-1 (T y = (T y – (T y = 0
即残差向量 ( 与由测量数据矩阵 ( 的各个向量:( 1,( 2 ,…,( N 张成的超平面(估计空间)正交,而最小二乘模型输出向量 y 为实际输出向量 y 在估计空间上的正交投影,这就是最小二乘估计的几何意义.
---------------------------------------------
最小二乘法是一种数学优化技术,它通过最小化误差的平方和找到一组数据的最佳函数匹配.

秒懂生活扩展阅读