举例:12、16的公约数有1、2、4,其中最大的一个是4,4是12与16的最大公约数,一般记为(12,16)=4 。12、15、18的最大公约数是3,记为(12,15,18)=3 。
4、几个自然数公有的倍数,叫做这几个数的公倍数,其中最小的一个自然数,叫做这几个数的最小公倍数 。
举例:4的倍数有4、8、12、16,……,6的倍数有6、12、18、24,……,4和6的公倍数有12、24,……,其中最小的是12,一般记为[4,6]=12 。12、15、18的最小公倍数是180 。记为[12,15,18]=180 。若干个互质数的最小公倍数为它们的乘积的绝对值 。
二、最大公约数的常见求法
1、质因数分解法
思路:把每个数分别分解质因数,再把各数中的全部公有质因数提取出来连乘,所得的积就是这几个数的最大公约数 。
举例:假设我们求24和60的最大公约数 。
第一步:分解24和60 。
24=2X2X2X3
60=2X3X2X5
第二步:24和60的最大公约数=24和60共有的公因子相乘,即2X2X3=12 。
2、短除法
思路:短除法求最大公约数,先用这几个数的公约数连续去除,一直除到所有的商互质为止,然后把所有的除数连乘起来,所得的积就是这几个数的最大公约数 。
短除法的本质就是质因数分解法,只是将质因数分解用短除符号来进行 。
举例:
12的因数有:1、2、3、4、6、12 。
18的因数有:1、2、3、6、9、18 。
12与18的公因数有:1、2、3、6 。
12与18的最大公因数是6 。
3、更相减损法
思路:
第一步:任意给定两个正整数;判断它们是否都是偶数 。若是,则用2约简;若不是则执行第二步 。
第二步:以较大的数减较小的数,接着把所得的差与较小的数比较,并以大数减小数 。继续这个操作,直到所得的减数和差相等为止 。
则第一步中约掉的若干个2与第二步中等数的乘积就是所求的最大公约数 。
举例:
用更相减损术求98与63的最大公约数 。
由于63不是偶数,把98和63以大数减小数,并辗转相减:
98-63=35
63-35=28
35-28=7
28-7=21
21-7=14
14-7=7
所以,98和63的最大公约数等于7 。
4、辗转相除法
用较小数除较大数,再用出现的余数(第一余数)去除除数,再用出现的余数(第二余数)去除第一余数,如此反复,直到最后余数是0为止 。如果是求两个数的最大公约数,那么最后的除数就是这两个数的最大公约数 。
举例:
求(319,377):
∵ 319÷377=0(余319)
∴(319,377)=(377,319);
∵ 377÷319=1(余58)
∴(377,319)=(319,58);
∵ 319÷58=5(余29)
∴ (319,58)=(58,29);
∵ 58÷29=2(余0)
∴ (58,29)= 29;
【最大公约数和最大同心圆 最大公约数】∴ (319,377)=29 。
秒懂生活扩展阅读
- 杏干和杏仁哪个营养价值更高
- 杜甫和孟浩然是哪个朝代的
- 速度和与速度差关系公式
- 吃香蕉的好处和坏处有哪些 吃香蕉的好处
- 空调和衣柜同一面墙要怎么装
- 欧式面包和法式面包是一样吗
- 千克和斤一样吗
- 任务群怎么区分会员和商家
- 孔子和墨子思想区别
- 紫苏叶和苏子叶的区别